
 3

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES • Volume 14, No 3

Sofia • 2014 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.2478/cait-2014-0028

Software Reliability Estimate with Duplicated Components
Based on Connection Structure

Zhen Li, Junfeng Tian, Pengyuan Zhao
College of Mathematics and Computer, Hebei University, Baoding 071002, Hebei, China
Emails: lizhen_hbu@126.com tjf@hbu.edu.cn zhaopengyuan@cmc.hbu.cn

Abstract: Reliability testing of complex software at the system level is impossible
due to the environmental constraint or the time limitation, so its reliability estimate
is often obtained based on the reliability of subsystems or components. The
connection structure was defined and the component-based software reliability was
estimated based on it. For the present popular software with duplicated
components, an approach to variance estimation of software reliability for complex
structure systems was proposed, which has improved the hierarchical
decomposition approach of variance estimation just for series-parallel systems.
Experimental results indicated that the approach to variance estimation for
reliability of software with duplicated components has advantages, such as the
simple calculation process, small error result, and suitability for complex structure
systems. Finally, the sensitivity analysis, used to identify critical components for
resource allocation, could better improve the software reliability.
Keywords: Component-based software, reliability, duplicated components, variance
estimation, complex structure.

1. Introduction

For complex software, reliability testing at the system level is impossible due to the
environmental constraint or the time limitation. In these situations, reliability can be
estimated by conducting testing at subsystem or component levels. The software
reliability estimate possesses uncertainty. In practice, people usually would rather
select the software with lower and more accuracy reliability estimate than software
with higher and less accuracy reliability estimate.

 4

A common practice in software design is to use the same components in
different locations of the software due to the requirement of the same or similar
functions. For the same components, their reliability is often inferred from the same
testing sample, that is, the reliability estimates of the same component are
s-dependent. For software with duplicated components, the variance of the software
reliability estimate needs computation of higher order moments involving iterations
and discrete convolutions. These procedures are often time-consuming. If we ignore
the dependence of the component reliability estimates, the variance of the software
reliability estimate will be underestimated [1, 2].

In recent years, researches on component-based software reliability have been
paid more and more attention to. M o h a m e d, Z u l k e r n i n e [3] have proposed a
simple CFG structure that represents inter-component and intra-component control
flow transitions; W a n g et al. [4] proposed a software reliability model which can
deal with the cases of component interaction; F i o n d e l l a et al. [5] presented an
efficient, scalable approach to analyze the reliability of a component-based software
system considering the correlated component failures. These researches can
estimate the component-based software reliability, but do not consider how to
estimate its uncertainty.

For the uncertainty measurement of software reliability estimates, C o i t [6]
demonstrated a flexible procedure to determine the confidence intervals for series-
parallel system reliability, when there was uncertainty regarding the component
reliability information; Jin expanded Coit’s method to estimate the confidence
intervals for series-parallel systems with arbitrarily repeated components [1], and
proposed a hierarchical decomposition procedure to determine the variance of the
reliability estimate for series-parallel systems [2]. H i l l et al. [7] presented
probability inequalities and results useful in defining the inequality-based reliability
estimate for series-parallel system with repeated components. The above
approaches are just for series-parallel systems and inadequate for complex structure
systems.

On the basis of the above problems, the connection structure is defined and the
component-based software reliability is estimated based on it. For software with
duplicated components, an approach to variance estimation of software reliability
for complex structure systems is proposed, which improves the hierarchical
decomposition approach of variance estimation just for series-parallel systems
proposed by J i n [2].

2. A connection structure for component-based software
First of all, the component-based software is hierarchized to multi layers and each
layer involves several modules, that is, the software is devised into multiple
modules in a hierarchical order from the system level down to the component level.
The rule to define a module is in two parts: 1) at least one component is included;
and 2) within a module, there is only one connection structure for sub-modules or
components. The connection structure is defined as follows:

Definition 1. A connection structure A is defined as the connection structure
of modules or components in the same layer for the hierarchical component-based

 5

software, denoted by A=〈S, P, F, B, L, SC, BC, LC〉 where the elements represent a
Sequence structure, Parallel structure, Fault tolerance structure, Branch structure,
Loop structure, Sequence Call structure, Branch Call structure and Loop Call
structure respectively. If a module contains only one component, the default
connection structure is S, assuming that the component connects to itself.

Definition 2. A connection structure flowchart is the running flow chart of the
hierarchical component-based software which expresses the connection structure of
modules or components in the same layer.

Definition 3. The component-based software CS is denoted by
CS { (), (), () | 1, 2,..., }C i M i A i i m= = where m is the number of layers, ()C i is the set
of the i-th layer components, ()M i is the set of the i-th layer modules, ()A i is the
set of connection structures of the i-th layer modules or components.

We assume that the transfer of control among components is a Markov
process. Let the reliability of components ic =1, 2,..., ,i n be ir and the transition
probability from ic to jc be ,i jp , , =1, 2, ..., ,i j n , [0,1].i jp ∈

2.1. Sequence structure
Components of the sequence structure are executed in sequence. The component
sequence reliability is the product of component reliability. The sequence’s
probability of occurrence is the product of each transition probability. Then the
reliability of the sequence structure can be expressed as the product of component
sequence reliability and the sequence’s probability of occurrence. In Fig. 1(a), the
reliability of a sequence structure RS is

(1)
1

S 1,2 2,3 1, 1 2 , 1
1 1

...
n n

n n n i i j
i j

R p p p r r r p r
−

− +
= =

= = ×∏ ∏

2.2. Parallel structure
In concurrent environment, the performance of the system can be improved by
running multiple components concurrently. The reliability of a parallel structure can
be expressed as the product of component reliability. In Fig. 1b, the reliability of the
parallel structure RP is

(2) P 1 2
1

... .
n

n i
i

R r r r r
=

= =∏

2.3. Fault tolerance structure
Only one of the components with a fault tolerance structure runs at a certain time.
In Fig. 1c, c1 2c ,…, nc , denoted by a dashed line, are the backup components of the
primary component 1c . When all components in Fig. 1c fail, the fault tolerance
structure is unreliable. The reliability of fault tolerance structure showed in Fig. 1c
RF is

(3) F 1 2
1

1 (1)(1)...(1) 1 (1).
n

n i
i

R r r r r
=

= − − − − = − −∏

 6

c1

p1,2
c2 cncn-1

pn-1,n

... ...

c1

c2

cn
... ...

c1

c2

cn

p1,2 p2,n

... ...

c2

c3

cn-1

c1 cn
p1,3 p3,n

pn-1,np1,n-1

c1
p1,2 c2 cncn-1

pn-1,n

pn,1

...
1-pn,1

(a)Sequence structure (b)Parallel structure (c)Fault tolerance structure

(d)Branch structure (e)Loop structure

c1

p1,2

c2

c3

p1,3

...
cn

p1,n1 1

1

(f)Sequence call structure

c1

p1,2

c2

c3

p1,3

...
cn

p1,n1 1

1

(g)Branch call structure

c1

c2
p1,2

(a)

(h)Loop call structure
Fig. 1. A connection structure

2.4. Branch structure
In the branch structure, only one branch runs at a certain time. In Fig. 1d, the branch
structure is denoted by a dash-dotted line. The reliability of the branch structure can
be expressed as the sum of the product of branch reliability and the branch
probability of occurrence. The reliability of the branch structure RB is

(4)
1

B 1,2 2, 2 1,3 3, 3 1, 1 1, 1 1, ,
2

... .
n

n n n n n n i i n i
i

R p p r p p r p p r p p r
−

− − −
=

= + + + =∑

2.5. Loop structure
Components with a loop structure are executed circularly. We add an entry
component before the loop structure and an exit component after the loop structure
in Fig. 1e. The reliability of the entry component entryr and the exit component exitr
is 1. Then the reliable state R and the unreliable state U are added as terminal states,
representing the state of the reliable and unreliable output respectively, shown in
Fig. 2; ,i j ip r represent the probability that the execution of ic produces the correct
result and the control is transferred to jc . We can gain the transition probability

matrix Q; (1, 2)k n +Q , the element of row 1, column n+2 for the k-th power of
matrix Q represents the probability that starting from an entry component, the chain
enters the absorbing state {R, U} at or before the k-th step. The value range of k is
[0,).∞ If there is at least one component 1c then 0 (1, 2)n +Q = 1(1, 2)n +Q = 0. Let

1

0
()k

k

∞
−

=

= = −∑M Q I Q , (1, 2),n +M the element of row 1, column n+2 for matrix

 7

M, is the probability from an entry to an exit component. The reliability of the loop
structure in Fig. 1e RL is

(5)

L exit

1,1 1 1,1 1

1 1

,1 , 1 ,1 , 1
1 1 1 1

(1, 2)

(1) 1 , 1;

(1) 1 , 1.
n n n n

n i i j n i i j
i j i j

R n r

p r p r n

p p r p p r n
− −

+ +
= = = =

= + =

⎧⎡ ⎤ ⎡ ⎤− − =⎣ ⎦ ⎣ ⎦⎪⎪
⎨⎡ ⎤ ⎡ ⎤

− × × − × × >⎪⎢ ⎥ ⎢ ⎥
⎪⎣ ⎦ ⎣ ⎦⎩

∏ ∏ ∏ ∏

M

Fig. 2. A loop structure after adding an entry, exit and states

2.6. Call structure

There are dependent relations among the components with a call structure. We
adopt the Continuation Passing Style (CPS) to transform these dependent relations.
CPS transformation makes the caller component divided into several program
segments, as sub-components, each of them does not calling other components.
There are three types of call structures.

Type 1. Sequence call structure. The dependency relation in a sequence call
structure is a sequence. In Fig. 1f, 1c calls 2c ,…, nc in the sequence and the
transition probability from 2c , or 3c ,…,or nc to 1c is 1. 1c is divided into sub-
components 1,1c , 1,2c , … , 1,nc . The input of 2c is the output of 1,1c , the input of 1,2c
is the output of 2c , …, as shown in Fig. 3a. According to (1), the reliability of the
sequence call structure RSC is

(6) SC 1,2 1,3 1, 1,1 1,2 1, 2 1, 1,
2 1 2

... ,
n n n

n n n i j k
i j k

R p p p r r r r r p r r
= = =

= = × ×∏ ∏ ∏ ,

where 1,1r , 1,2r , … , 1,nr is the reliability of 1,1c , 1,2c , … , 1,nc respectively.
Type 2. Branch call structure. The dependency relation in a branch call

structure is a branch. In Fig. 1g 1c calls 2c , or 3c , …, or nc and the transition
probability from 2c , 3c ,…, nc to 1c is 1. 1c is divided into 1,1c and 1,2c . In Fig. 3b,

1,1c is the part of 1c before the branch and 1,2c is the part of 1c after the branch.
The reliability of the branch structure can be calculated by (4). The reliability of the
branch call structure RBC is

(7) BC 1,1 1,2 1,2 2 1,3 3 1, 1,1 1,2 1,
2

(...) .
n

n n i i
i

R r r p r p r p r r r p r
=

= + + + = ∑

Type 3. Loop call structure. The dependency relation in a loop call structure
is a loop. In Fig. 1h, 1c calls 2c circularly and the transition probability from 2c to

 8

1c is 1. 1c is divided into 1,1c and 1,2c . In Fig. 3c, 1,1c is the part of 1c before calling

2c circularly, and 1,2c is the part of 1c after calling 2c circularly. The reliability of
the loop structure can be calculated by (5). The reliability of the loop call structure
RLC is
(8) () ()LC 1,1 1,2 1,2 1,2 2 2,1 2 1,2 1,2 1,1 1,2 2 2,1 2(1) 1 (1) 1 .R r r p p r p r p p r r r p r⎡ ⎤ ⎡ ⎤= × − − = − −⎣ ⎦ ⎣ ⎦

Fig. 3. A call structure after division

3. Reliability estimate of component-based software

It is easily proved that any component-based software can be expressed by a
connection structure flowchart. Without loss of generality, the connection structure
flowchart of component-based software in Fig. 4a is used as an example. The main
modules are denoted by a dash-dotted line in each layer. The layer 0 of software is
denoted by 0S ; ,u vS , 1, 2,...u v = , indicating that the sub-modules or components
are connected in a sequence at its lower adjacent layer and it is the v-th module in
layer u. The first subscript indicates the layer number, while the second subscript
indicates the module number on that layer. Modules with other connection
structures can be indicated by a similar expression. The hierarchical model of
component-based software is shown in Fig. 4b.

To standardize the hierarchy, artificial modules, denoted by a dashed line, are
introduced to the intermediate layers, such that all modules at one layer can only
communicate with their adjacent layers. The overall software reliability R in Fig. 4a
can be expressed recursively as

(9) 0 1,1 2,1 1,2 2,2 1,3 2,3

1,4 2,4 2,5 1,5 2,6

1 2 3 4 5

1 6 7 1 3

([()], [(,)], [(,)],

[(,), (,)], [()]).
S S S L L F F

B S SC S S

R R R R r R R r r R R r r

R R r r R r r R R r

=

The true component reliability ,ir 1, 2,...,7,i = is usually not available, and
the estimate îr is often used to substitute ir . For ic , n samples are tested for a
period of time t and the number of failures is f. The reliability of ic can be
estimated using a binomial distribution [6]: ˆ ()ir n f n= − , []ˆ ˆ ˆ ˆvar() (1)i i ir r r n= − .
After substituting îr into (9), the software reliability estimate becomes

(10) 0 1,1 2,1 1,2 2,2 1,3 2,3

1,4 2,4 2,5 1,5 2,6

1 2 3 4 5

1 6 7 1 3

ˆ ˆ ˆ ˆ ˆ ˆ([()], [(,)], [(,)],

ˆ ˆ ˆ ˆ ˆ[(,), (,)], [()]).
S S S L L F F

B S SC S S

R R R R r R R r r R R r r

R R r r R r r R R r

=

 9

If the mean of îr (i.e., ˆ[]i ir E r=) is substituted into (9), the mean of the
software reliability estimate can be approximated as

(11) 0 1,1 2 ,1 1,2 2 ,2 1,3 2 ,3

1,4 2 ,4 2 ,5 1,5 2 ,6

1 2 3 4 5

1 6 7 1 3

ˆ() ([()], [(,)], [(,)],

[(,), (,)], [()]).
S S S L L F F

B S SC S S

E R R R R r R R r r R R r r

R R r r R r r R R r

≅

Fig. 4. An example of component-based software

We assume that the uncertainties of the component reliability estimates are
relatively small and the standard deviation, divided by the mean value, is less than
0.3 [8]. We expand (10) at the nominal mean ˆ()E R , using the first-order Taylor
series. We obtain

(12)
7

1

ˆ ˆ ˆ() ()i i i
i

R E R b r r
=

≅ + −∑ ,

where
1,1 2,1 1,4 2,4 1,4 2,50 0 0

1,1 2,1 1,4 2,4 1,4 2,5

1
1 1 1

,S S B S B SCS S S

S S B S B SC

R R R R R RR R R
b

R R r R R r R R r

∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂
= + +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

1,2 2,20

1,2 2,2

2
2

,L LS

L L

b
R RR

R R r

∂ ∂∂

∂ ∂ ∂
= 1,2 2,2 1,5 2,60 0

1,2 2,2 1,5 2,6

3
3 3

,L L S SS S

L L S S

R R R RR R
b

R R r R R r

∂ ∂ ∂ ∂∂ ∂
= +
∂ ∂ ∂ ∂ ∂ ∂

1,3 2,30

1,3 2,3

4
4

,F FS

F F

b
R RR

R R r

∂ ∂∂

∂ ∂ ∂
= 1,3 2,30

1,3 2,3

5
5

,F FS

F F

b
R RR

R R r

∂ ∂∂

∂ ∂ ∂
= 1,4 2,40

1,4 2,4

6
6

,B SS

B S

b
R RR

R R r

∂ ∂∂

∂ ∂ ∂
=

1,4 2,50

1,4 2,5

7
7

.B SCS

B SC

R RR
R R

b
r

=
∂ ∂∂

∂ ∂ ∂

 10

All derivatives are evaluated at the nominal value of the component reliability
estimates. For example,

0 1,1
()S SR R∂ ∂ =

0 1,1 1 2 3 4 5 6 7(, , , , , ,)() |S S r r r r r r rR R∂ ∂ . Because

0 1,1 1,2 1,3 1,4 1,51,2 3,4S S L F B SR p p R R R R R= ,
1,1 2,1S SR R= ,

1,2 2,2L LR R= ,
1,3 2,3F FR R= ,

1,4 2,4 2,54,6 7,10 4,8 8,10B S SCR p p R p p R= + ,
1,5 2,6S SR R= ,

2,1 1SR r= ,

()
2,2 2,3 2 3 2,3 3,2 2 31LR p r r p p r r= − ,

2,3 4 5 4 5FR r r r r= + − ,
2,4 6,7 1 6SR p r r= ,

2,5 8,9 1 7SCR p r r= ,

2,6

2
10,11 1SR p r= ,

the coefficient ib can be obtained as

1,2 1,3 1,4 1,5 1,1 1,2 1,3 1,51 1,2 3,4 1,2 3,4 4,6 6,7 8,9 7,10 6L F B S S L F Sb p p R R R R p p p p p p R R R R r= + +

1,1 1,2 1,3 1,51,2 3,4 4,8 8,10 7S L F Sp p p p R R R R r ,
1,1 1,3 1,4 1,5

2
2 1,2 2,3 3,4 3 2,3 3,2 2 3(1)S F B Sb p p p R R R R r p p r r= − ,

1,1 1,3 1,4 1,5 1,1 1,2 1,3 1,4

2
3 1,2 2,3 3,4 2 2,3 3,2 2 3 1,2 3,4 9,10 1(1) 2S F B S S L F Bb p p p R R R R r p p r r p p p R R R R r= − + ,

1,1 1,2 1,4 1,54 1,2 3,4 5(1)S L B Sb p p R R R R r= − ,
1,1 1,2 1,4 1,55 1,2 3,4 4(1)S L B Sb p p R R R R r= − ,

1,1 1,2 1,3 1,56 1,2 3,4 4,6 6,7 7,9 1S L F Sb p p p p p R R R R r= ,
1,1 1,2 1,3 1,57 1,2 3,4 4,8 8,9 8,10 1S L F Sb p p p p p R R R R r= .

We rearrange (12) and obtain

(13) ()
7 72 2 2

1

ˆ ˆ ˆ ˆ ˆ() () ()()i i i i j i i j j
i i j

R E R b r r b b r r r r
= ≠

− ≅ − + − −∑ ∑ .

Taking the expectation of both sides of (13), the variance of the software
reliability estimate is

(14)
7 7

2 2 2

1 1

ˆˆ ˆˆ ˆvar() [()] var()i i i i i
i i

R b E r r b r
= =

≅ − =∑ ∑ .

We notice that only ir and ˆ ˆvar()ir are needed for estimating ib and ˆˆvar()R .
Therefore, our model does not require computation of the higher order moments of
the component reliability estimates. Hence, it significantly simplifies the
computation steps of ˆˆvar()R .

4. Experiments and analyses

Our experiment has been carried out by using an ATM bank system [9]. The
software system structure is shown in Fig. 5a. It consists of ten components and
components 2c , 3c , 5c , 6c and 9c contains a natural fault respectively. Fig. 5b
shows the connection structure flowchart of it.

4.1. Software reliability estimate and comparison of the approaches to variance
estimation

According to these five faults, five versions of the software were constructed and
each version contained one fault. We randomly generated inputs to estimate the
reliability of each individual faulty component until it was converged. The

 11

operational behaviours were collected to calculate the transition probability. 5c is
divided into sub-components 5,1c and 5,2c . The reliability estimates are as follows:

1̂r =1.000, 2̂r =0.987, 3̂r =0.998, 4̂r =1.000, 5,1r̂ =1.000, 5,2r̂ =0.996, 6̂r =0.994,

7̂r =1.000, 8̂r =1.000, 9̂r =0.976, 10r̂ =1.000. The transition probabilities are shown in
Fig. 5b.

For the hierarchical model of ATM bank system, the modules or components
at each layer are shown in Table 1. The software reliability estimate is 0.864
according to the approach in Section 3. Due to limitations in space, the detail
calculation process is omitted.

The traditional approaches to variance estimation consider the dependence of
the components, and need computation of higher order moments. These procedures
are often time-consuming. If we assume that the components are s-independent, the
estimation process will be facilitated, yet the variance of the software reliability
estimate will be underestimated [1, 2]. Jin’s hierarchical decomposition approach
[2] does not need the computation of higher order moments, but it is just for series-
parallel systems. Our approach can be suitable for complex structure systems with
duplicated components.

Start

GUI

Identifier

Account
manager

Transactor

End DBMS

Messenger

Verifier

Helper

c1

c2

c3c4

c5c6 c7

c8 c9

c10

p1,2=0.001, p1,4=0.999, p2,3=1.000, p4,5=1.000, p5,6=1.000, p6,4=0.047,
p6,7=0.001, p6,9=0.001, p6,10=0.951, p7,8=1.000, p10,11=1.000, p10,12=0.436,
p10,14=0.100, p10,15=0.464,p12,10=0.781, p12,13=0.219, p13,10=1.000,
p14,10=1.000, p15,10=0.010, p15,16=0.990, p16,10=1.000.

c1

c2 c10

c2 c3 c4

c2 c10

c10

c5 c10

c3

c7

c8

c9c6

p1,2 p2,3

p1,4

p4,5 p5,6

p6,4

p6,7

p6,9

p6,10 p10,11

p7,8

p10,12

p12,10

p12,13

p13,10

p10,15

p15,10

p15,16
p16,10

p10,14 p14,10

(a) System structure

(b) Connection structure flowchart
Fig. 5. ATM bank system structure and its connection structure flowchart

 12

Table 1. The set of modules or components for each layer
Layer The set of modules or components

0 S0={ S1,1, B1,2}
1 S1,1={S2,1}, B1,2={S2,2, S2,3}
2 S2,1={S3,1}, S2,2={S3,2}, S2,3={L3,3, B3,4}
3 S3,1={S4,1}, S3,2={S4,2}, L3,3={L4,3}, B3,4={S4,4, S4,5, S4,6}
4 S4,1={S5,1}, S4,2={S5,2}, L4,3={L5,3}, S4,4={S5,4}, S4,5={S5,5}, S4,6={BC5,6, S5,7}
5 S5,1={S6,1}, S5,2={S6,2}, L5,3={L6,3}, S5,4={S6,4}, S5,5={S6,5}, BC5,6={S6,6,B6,7},

S5,7={S6,8}
6 S6,1={S7,1}, S6,2={S7,2}, L6,3={L7,3}, S6,4={S7,4}, S6,5={S7,5}, S6,6={S7,6}, B6,7={B7,7,

S7,8, B7,9}, S6,8={S7,10}
7 S7,1={S8,1}, S7,2={S8,2}, L7,3={L8,3}, S7,4={S8,4}, S7,5={S8,5}, S7,6={S8,6}, B7,7={S8,7,

S8,8 }, S7,8={S8,9}, B7,9={S8,10, S8,11}, S7,10={S8,12}
8 S8,1={c1}, S8,2={c2,c10}, L8,3={c2,c3,c4}, S8,4={c2,c10}, S8,5={c10}, S8,6={c5},

S8,7={c3}, S8,8={c3,c7}, S8,9={c6}, S8,10={c8}, S8,11={c8,c9}, S8,12={c10}
9 {c1, c2, c3, c4, c5, c6, c7, c8, c9, c10}

4.2. Sensitivity analysis

Sensitivity analysis allows insight into the impact of changing the component
reliability with respect to the software reliability. It can help to identify the critical
components for a resource allocation. The critical point of software reliability R
with respect to a component reliability ir can be defined as ,R i iC R r= Δ Δ . The
higher valued critical point indicates the critical component.

The critical points of changing the component reliability are shown in Fig. 6.
Take the increment of a component reliability from 0.8 up to 0.85 for example, we
suppose that the initial reliability of each component is 0.8, and we start to increase
each one from 0.8 to 0.85 in turn and observe its impact on the software reliability.
We repeatedly change the different increments of each component and present the
critical point of it. Fig. 6 shows that as the component reliability ir increases, the
value of ,R iC becomes high. The criticality of all components increases sharply,
except ,6RC and ,7RC in a small increment. The critical values of the components

3c , 5,1c and 5,2c are higher than those of other components and the critical values of
the components 6c and 7c are lower than those of the other components, which
conforms to the actual application of an ATM bank system and is in accordance
with the critical points of the software reliability with respect to the component
reliabilities in [9]. The software reliability can be improved more efficiently if the
critical components are reliable.

5. Conclusions and future work

For the present popular software with duplicated components, an approach to
software reliability estimate and its variance estimation for complex structure
systems is proposed, which has important applications in software reliability
analysis with duplicated components. There is one condition in our approach, that

 13

is, the uncertainties of the component reliability estimates must be relatively small.
This condition is often satisfied in a risk-averse software design environment or
during the manufacturing processes where the parameters often shifted around the
nominal ones within a small range. The future work will be focused on the
extension of the decomposition method to general software or manufacturing
processes, where the condition of small variations is violated.

Fig. 6. The criticality of changing the component reliability

Acknowledgement: This paper was supported by the National Natural Science Foundation of China
(61170254), Natural Science Foundation of Hebei Province (F2012201145), Science and Technology
Research and Development Guidance Plan Project of Baoding City (13ZG012) and the Science
Foundation of Hebei University(2013250).

R e f e r e n c e s

1. J i n, T., D. C o i t. Variance of System-Reliability Estimates with Arbitrarily Repeated
Components. – IEEE Transactions on Reliability, Vol. 50, 2001, No 4, 409-413.

2. J i n, T. Hierarchical Variance Decomposition of System Reliability Estimates with Duplicated
Components. – IEEE Transactions on Reliability, Vol. 57, 2008, No 4, 564-573.

3. M o h a m e d, A., M. Z u l k e r n i n e. A Control Flow Representation for Component-Based
Software Reliability Analysis. – In: Proceedings of International Conference on Software
Security and Reliability, IEEE, 2008, 1-10.

4. W a n g, Q., Y. L u, Z. X u, J. H a n. Software Reliability Model for Component Interaction Mode.
– Journal of Electronics (China), Vol. 28, 2011, No 4, 632-642.

5. F i o n d e l l a, L., S. R a j a s e k a r a n, S. S. G o k h a l e. Efficient Software Reliability Analysis
with Correlated Component Failures. – IEEE Transactions on Reliability, Vol. 62, 2013,
No 1, 244-255.

6. C o i t, D. System-Reliability Confidence-Intervals for Complex-Systems with Estimated
Component-Reliability. – IEEE Transactions on Reliability, Vol. 46, 1997, No 4, 487-493.

7. H i l l, S. D., J. C. S p a l l, C. J. M a r a n z a n o. Inequality-Based Reliability Estimates for
Complex Systems. – Naval Research Logistics, Vol. 60, 2013, No 5, 367-374.

8. C h e n, Y., B. L i, C. Y u e. Total Sensitivity Index Calculation via Error Propagation Equation. –
In: Proceedings of International Conference on Innovative Computing, IEEE, 2007, 619 p.

9. H s u, C., C. H u a n g. An Adaptive Reliability Analysis Using Path Testing for Complex
Component-Based Software Systems. – IEEE Transactions on Reliability, Vol. 60, 1997,
No 1, 158-170.

